16 research outputs found

    Bag-Level Aggregation for Multiple Instance Active Learning in Instance Classification Problems

    Full text link
    A growing number of applications, e.g. video surveillance and medical image analysis, require training recognition systems from large amounts of weakly annotated data while some targeted interactions with a domain expert are allowed to improve the training process. In such cases, active learning (AL) can reduce labeling costs for training a classifier by querying the expert to provide the labels of most informative instances. This paper focuses on AL methods for instance classification problems in multiple instance learning (MIL), where data is arranged into sets, called bags, that are weakly labeled. Most AL methods focus on single instance learning problems. These methods are not suitable for MIL problems because they cannot account for the bag structure of data. In this paper, new methods for bag-level aggregation of instance informativeness are proposed for multiple instance active learning (MIAL). The \textit{aggregated informativeness} method identifies the most informative instances based on classifier uncertainty, and queries bags incorporating the most information. The other proposed method, called \textit{cluster-based aggregative sampling}, clusters data hierarchically in the instance space. The informativeness of instances is assessed by considering bag labels, inferred instance labels, and the proportion of labels that remain to be discovered in clusters. Both proposed methods significantly outperform reference methods in extensive experiments using benchmark data from several application domains. Results indicate that using an appropriate strategy to address MIAL problems yields a significant reduction in the number of queries needed to achieve the same level of performance as single instance AL methods

    Multiple Instance Learning: A Survey of Problem Characteristics and Applications

    Full text link
    Multiple instance learning (MIL) is a form of weakly supervised learning where training instances are arranged in sets, called bags, and a label is provided for the entire bag. This formulation is gaining interest because it naturally fits various problems and allows to leverage weakly labeled data. Consequently, it has been used in diverse application fields such as computer vision and document classification. However, learning from bags raises important challenges that are unique to MIL. This paper provides a comprehensive survey of the characteristics which define and differentiate the types of MIL problems. Until now, these problem characteristics have not been formally identified and described. As a result, the variations in performance of MIL algorithms from one data set to another are difficult to explain. In this paper, MIL problem characteristics are grouped into four broad categories: the composition of the bags, the types of data distribution, the ambiguity of instance labels, and the task to be performed. Methods specialized to address each category are reviewed. Then, the extent to which these characteristics manifest themselves in key MIL application areas are described. Finally, experiments are conducted to compare the performance of 16 state-of-the-art MIL methods on selected problem characteristics. This paper provides insight on how the problem characteristics affect MIL algorithms, recommendations for future benchmarking and promising avenues for research

    Feature Learning from Spectrograms for Assessment of Personality Traits

    Full text link
    Several methods have recently been proposed to analyze speech and automatically infer the personality of the speaker. These methods often rely on prosodic and other hand crafted speech processing features extracted with off-the-shelf toolboxes. To achieve high accuracy, numerous features are typically extracted using complex and highly parameterized algorithms. In this paper, a new method based on feature learning and spectrogram analysis is proposed to simplify the feature extraction process while maintaining a high level of accuracy. The proposed method learns a dictionary of discriminant features from patches extracted in the spectrogram representations of training speech segments. Each speech segment is then encoded using the dictionary, and the resulting feature set is used to perform classification of personality traits. Experiments indicate that the proposed method achieves state-of-the-art results with a significant reduction in complexity when compared to the most recent reference methods. The number of features, and difficulties linked to the feature extraction process are greatly reduced as only one type of descriptors is used, for which the 6 parameters can be tuned automatically. In contrast, the simplest reference method uses 4 types of descriptors to which 6 functionals are applied, resulting in over 20 parameters to be tuned.Comment: 12 pages, 3 figure

    Multiple instance learning under real-world conditions

    Get PDF
    Multiple instance learning (MIL) is a form of weakly-supervised learning that deals with data arranged in sets called bags. In MIL problems, a label is provided for bags, but not for each individual instance in the bag. Like other weakly-supervised frameworks, MIL is useful in situations where obtaining labels is costly. It is also useful in applications where instance labels cannot be observed individually. MIL algorithms learn from bags, however, prediction can be performed at instance- and bag-level. MIL has been used in several applications from drug activity prediction to object localization in image. Real-world data poses many challenges to MIL methods. These challenges arise from different problem characteristics that are sometimes not well understood or even completely ignored. This causes MIL methods to perform unevenly and often fail in real-world applications. In this thesis, we propose methods for both classification levels under different working assumptions. These methods are designed to address challenging problem characteristics that arise in real-world applications. As a first contribution, we survey these characteristics that make MIL uniquely challenging. Four categories of characteristics are identified: the prediction level, the composition of bags, the data distribution types and the label ambiguity. Each category is analyzed and related state-of-the-art MIL methods are surveyed. MIL applications are examined in light of these characteristics and extensive experiments are conducted to show how these characteristics affect the performance of MIL methods. From these analyses and experiments, several conclusions are drawn and future research avenues are identified. Then, as a second contribution, we propose a method for bag classification which relies on the identification of positive instances to train an ensemble of instance classifiers. The bag classifier uses the predictions made on instances to infer bag labels. The method identifies positive instances by projecting the instances into random subspaces. Clustering is performed on the data in these subspaces and positive instances are probabilistically identified based on the bag label of instances in clusters. Experiments show that the method achieves state-of-theart performance while being robust to several characteristics identified in the survey. In some applications, the instances cannot be assigned to a positive or negative class. Bag classes are defined by a composition of different types of instances. In such cases, interrelations between instances convey the information used to discriminate between positive and negative bags. As a third contribution, we propose a bag classification method that learns under these conditions. The method is a applied to predict speaker personality from speech signals represented as bags of instances. A sparse dictionary learning algorithm is used to learn a dictionary and encode instances. Encoded instances are embedded in a single feature vector summarizing the speech signal. Experimental results on real-world data reveal that the proposed method yields state-of-the-art accuracy results while requiring less complexity than commonly used methods in the field. Finally, we propose two methods for querying bags in a multiple instance active learning (MIAL) framework. In this framework the objective is to train a reliable instance classifier using a minimal amount of labeled data. Single instance methods are suboptimal is this framework because they do not account the bag structure of MIL. The proposed methods address the problem from different angles. One aims at directly refining the decision boundary, while the other leverage instance and bag labels to query instances in the most promising clusters. Experiments are conducted in an inductive and transductive setting. Results on data from 3 application domains show that leveraging bag structure in this MIAL framework is important to effectively reduce the number of queries necessary to attain a high level of classification accuracy. This thesis shows that real-world MIL problems pose a wide range of challenges. After an in-depth analysis, we show experimentally that these challenges have a profound impact on the performance of MIL algorithms. We propose methods to address some of these challenges and validate them on real-world data sets. We also identify future directions for research and remaining open problems

    Measuring Disentanglement: A Review of Metrics

    Full text link
    Learning to disentangle and represent factors of variation in data is an important problem in AI. While many advances are made to learn these representations, it is still unclear how to quantify disentanglement. Several metrics exist, however little is known on their implicit assumptions, what they truly measure and their limits. As a result, it is difficult to interpret results when comparing different representations. In this work, we survey supervised disentanglement metrics and thoroughly analyze them. We propose a new taxonomy in which all metrics fall into one of three families: intervention-based, predictor-based and information-based. We conduct extensive experiments, where we isolate representation properties to compare all metrics on many aspects. From experiment results and analysis, we provide insights on relations between disentangled representation properties. Finally, we provide guidelines on how to measure disentanglement and report the results

    A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion

    Full text link
    The goal of voice conversion is to transform source speech into a target voice, keeping the content unchanged. In this paper, we focus on self-supervised representation learning for voice conversion. Specifically, we compare discrete and soft speech units as input features. We find that discrete representations effectively remove speaker information but discard some linguistic content - leading to mispronunciations. As a solution, we propose soft speech units. To learn soft units, we predict a distribution over discrete speech units. By modeling uncertainty, soft units capture more content information, improving the intelligibility and naturalness of converted speech. Samples available at https://ubisoft-laforge.github.io/speech/soft-vc/. Code available at https://github.com/bshall/soft-vc/.Comment: 5 pages, 2 figures, 2 tables. Accepted at ICASSP 202

    On passion and moral behavior in achievement settings: The mediating role of pride

    Get PDF
    The Dualistic Model of Passion (Vallerand et al., 2003) distinguishes two types of passion: harmonious passion (HP) and obsessive passion (OP) that predict adaptive and less adaptive outcomes, respectively. In the present research, we were interested in understanding the role of passion in the adoption of moral behavior in achievement settings. It was predicted that the two facets of pride (authentic and hubristic; Tracy & Robins, 2007) would mediate the passion-moral behavior relationship. Specifically, because people who are passionate about a given activity are highly involved in it, it was postulated that they should typically do well and thus experience high levels of pride when engaged in the activity. However, it was also hypothesized that while both types of passion should be conducive to authentic pride, only OP should lead to hubristic pride. Finally, in line with past research on pride (Carver, Sinclair, & Johnson, 2010; Tracy et al., 2009), only hubristic pride was expected to negatively predict moral behavior, while authentic pride was expected to positively predict moral behavior. Results of two studies conducted with paintball players (N=163, Study 1) and athletes (N=296, Study 2) supported the proposed model. Future research directions are discussed in light of the Dualistic Model of Passion

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    corecore